Funded by
the European Union

Escaping from Identity Providers: Protecting
Privacy with Verifiable Credentials in Community
Solid Server

Ben Macdonald, Ross Horne, Biagio Boi

University of Salerno

S,

2nd Solid Symposium - SoSy Privacy Session, 2-3 May 2024, Leuven

mailto:bboi@unisa.it

Introduction

Access to Solid PODs is currently managed using
passwords.

Password-based authentication is the weakest in terms of
privacy since credentials are stored on the Service Provider
(SP), which is also responsible for service data.

0IDC is a valid alternative, where an Authentication
Server (AS)is responsible for managing users identity.

Select an identity provider

Enter the URL of your identity provider:

https://solidcommunity.net

Or pick an identity provider from the list below:

Solid Community

Solid Web

Inrupt.net

pod.Inrupt.com

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bhoi@unisa.it

Introduction

1. Alice uses the decentphotos app.
2. Alice selects her OP or WebiD

2.1 Retrieve Profile

WeblD Profile

Y eomen — In typical OIDC-based authentication, the AS is
- contacted by the client to obtain an access token.

4. Generates PKCE code and code verfier

T
5. Saves code verifier to session storage

6. Authorization Request

7. Fetch Client ID Document

ClientlD Profile

‘ The AS checks for the identity through a simple
e username and password request.

10. Generates a code ‘

11. Send code to redirect url

Login

Username Username

Password Password

Forgot password?

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bboi@unisa.it

Introduction

& End © Op ‘

T
1. Alice uses the decentphotos app.

T
2. Alice selects her OP or WebiD

e e Moreover, the OpenlD Provider checks for

WeblD Profile

o the client's request URL before releasing the
access token.

T
5. Saves code verifier to session storage

[y

6. Authorization Request

7. Fetch Client ID Document

ClientiD Piofile

8. Validates redirect url with WebID.
9. Alice Logs In

10. Generates a code

11 Send code to efiect ut mySolidApp Solid Identity Provider

12. Generates DPoP Client Key Pair

T
13. Generates a DPoP Header

// Start Login Process (1) pedirect to Solid Identity Provider | Username:
login({...});) >
14. Token request with code and code verifier Password

<
15. Validates code verifier

| X)
16. Validates DPoP Token signature Login @ Login

// Handle login info . . o
@ Redirect back to Solid Application :

T
17. Converts the DPOP public key to a JWK thumbprint

I . .
19. Generates id token handleIncomingRedirect (

T (o h)s

20. Generates refresh token

‘ 21. Send tokens
[

- ‘ son ‘

 lrs 0 ocumen ‘ o cln ‘

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bhoi@unisa.it

Introduction

o o ‘ ’ Docur
i ==
2
) S The ID Provider might store information
‘WeblD Profile
Fp—— about the Token redirect URL, leading to a
‘OP configuration N . [- g
‘. violation of the privacy property unlinkability.
D IO
6. Authorization Request
7. Fetch Client ID Document
ClientID Profile
e
1. Send code to edirect ut mySolidApp | B Solid Identity Provider
2 GanraisOPe Gl ey o
‘,_Gmﬂm.,,,,p,.e; // Start Login Procgss Redirect to Solid Identity Provider | Username:
login({...}); P s ne e S| >
14. Token request with code and code verifier Password
15. Validates code verifier ’
1&.Val(damsu7n:PTnkeus(gmmm /7 Handle login inth . . - @ Login
BTSRRI @ Redirect back to Solid Application 1 B
19, Generates d token handleIncomingRed i o - - - ---- - ----- -~ -~~~ ==~--~
D Leed)s
‘ 21. Send tokens
- ‘ o ‘ — ‘ ‘

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bhoi@unisa.it

Introduction

CTo prevent privacy issues, a novel approach based on user-centric authentication has been proposed.)

The schema is based on the concept of Verifiable
Credentials (VCs). VCs are digitally signed representations
of a physical credential.

present

% / Holder

manages credentials;

uses them to create

presentations of proof
i i Sfor Verifiers ﬁ
. . . ope . i " . d
A trust triangle is defined and a verifiable data registry % e Vet Dta Rty |1 B
typically holds the information to check the signature. Issuer Verifier
digitally signs requests proof; verifies
attestations; packages that issuer attestations
and gives cred to Holder satisfy requirements

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bhoi@unisa.it

Introduction

(To prevent privacy issues, a novel approach based on user-centric authentication has been proposed.)

{

// set the context, which establishes the special terms we will be using
// such as 'issuer' and 'alumniOf’.
"@context": [

The schema is based on the concept of Verifiable "https://w.u3.org/ns/credentials/v2",
. L. . . https://www.w3.0org/ns/credentials/examples/v2
Credentials (VCs). VCs are digitally signed representations ity the identitier for the credentiot
Of a phySICaI CrEdentIaI' /;dt;le ::1:::;1/:::11.\/:;:2?.::?.I::l::E{:g:n:::lss;:zt; expect in the credential
"type": ["VerifiableCredential", "ExampleAlumniCredential"],

// the entity that issued the credential

"issuer": "https://university.example/issuers/565049",
// when the credential was issued

"validFrom": "2010-01-01T19:23:24Z",

// claims about the subjects of the credential

A trust triangle . / : about the
t ica” holgs A VC Contalns One or more C;jd::;:li::ie‘;zr.t:e only subject of the credential
R attributes, creating the subject- /1" stsertion sbout the only subject of the credential
. o "alum: : {
property-value relationship. e N
ronet; SElaplEETRR
}

b
}

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bhoi@unisa.it

Introduction

(To prevent privacy issues, a novel approach based on user-centric authentication has been proposed.)

{

// set the context, which establishes the special terms we will be using
// such as 'issuer' and 'alumniOf’.
"@context": [

The schema is based on the concept of Verifiable "https: //wa.u3. org/ns/credent ials/v2",

"https://www.w3.0org/ns/credentials/examples/v2"
Credenti:

1,
of a phys

// specify the identifier for the credential

It aISO defines information on Who "id": "http://university.example/credentials/1872",

the credential types, which declare what data to expect in the credential

released the Credential, the kind of "ty;;:e": ["VerifiableCredential™, "ExampleAlumniCredential"],

the entity that issued the credential

Credentlal, and the explratlon date ! "issuelf“:;r"h tps://university.example/issuers/565049" ,

hen edential was issued
"validFrom": "2010-01-01T19:23:242",
- . - ope . laims about the subject i
Atrust triangle is defined and a verifiable data registry T I e T
- 2 2 e identifier for the only subject of the credential
typically holds the information to check the signature. s g idsexampes ebfeb1iT2ebes 1o b0 2000
// assertion about the only subject of the credential
"alumniof": {
// identifier for the university
"id": "did:example:c276el2ec2lebfeb1f712ebc6f1",
// name of the university
"name": "Example University"
}
}
}

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bhoi@unisa.it

Introduction

(To prevent privacy issues, a novel approach based on user-centric authentication has been proposed.)

{

// set the context, which establishes the special terms we will be using
// such as 'issuer' and 'alumniOf’.
"@context": [

The schema is based on the concept of Verifiable "https://w.u3.org/ns/credentials/v2",
. L. . . https://www.w3.0org/ns/credentials/examples/v2
Credentials (VCs). VCs are digitally signed representations ity the identitier for the credentiot
Of a phySICaI CrEdentIaI' /;dt:le ::1:::;1/:::11.\/:;:2?.::?.I::l::E{:g:n:::lssiizzt; expect in the credential
"type": ["VerifiableCredential", "ExampleAlumniCredential"],

// the entity that issued the credential
"issuer": "https://university.example/issuers/565049",
// when the credential was issued
A trust triangle is define DIDs are used to identify l ”l‘dF":oxmzinzufzﬁ"“
typica”y hOIdS the inforl the SubJeCt Of a Credentlal_ " identifier for the only subject of the credential

"did:example:ebfeb1f712ebc6flc276el2ec21",

assertion_ahout the only subiect of the credential

"alumniof": {
// identifier for the university
"id": "did:example:c276el2ec2lebfeb1f712ebc6f1",
// name of the university
"name": "Example University"

}

Y
}

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bhoi@unisa.it

Introduction

COMPLETE
CONTROL
OF IDENTITY

SECURITY
} FROM HACKERS

I FULL SELECTIVE
SELF-SOVEREIGN DISCLOSURE
IDENTITY IDENTITY
NOT ALWAYS y % ALWAYS
AVAILABLE AVAILABLE

,' .
« (o)
P
....... o : ACCESSIBLE BY
ACCESSIBLE BY x THIRD PARTIES AFTER
THIRD PARTIES AUTHORIZATION

LIMITED CONTROL ﬁ _______ iz

OF IDENTITY J) % '

NO SECURITY
FROM HACKERS)
umiTep seLecTive (Fg R8T I I

DISCLOSURE FEDERATED

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bhoi@unisa.it

Introduction

SSI User Agent SISSI AS

] 9e"peerDID() geNpeerDID 0
- _1UserDID <_ __' ServerDID
(send o pack)(dar)

An architecture for authentication and authorization approach has
been proposed in[1], while a detailed analysis of security properties is

described in[2]. «

(xtrctar o unpack)(dmsq)

(send o pack)(dypr)
(gr o unpack) (dmsg)
Protocol | Property | No. Relative File Path in Repository | OK | Attack <---" C(”g” d"s’)
genyp(Copr, Gupr
Plain VCs Secrecy 1 ssipv.pv#L287 N A
(PlainVCs/DIDComm/) 2 archive/ssipv_forward_secrecy.pv N LiZlidy
Agreement | 3 ssipv.pv#309 N (send o pack)(dup)
4 ssipv_ok_VP_leaked.pv v’ (xtretop o unpack)(dmsg)
5 ssipv_unforgeable_VC.pv N
6 ssipv_attack_domain_missing_replay.pv X | masquerade as prover KZZTrdy
7 ssipv_attack_no_nonce_VP_leaked.pv X replay credential (0ls=o A7 0 q)(dop)
8 ssipv_attack_VC_reissued.pv X | reissue old credential =i ascess decision
ez =2
Unlinkablitiy | 9 ssipv_unlinkable.dps v’ genyespaccess decision)
10 ssipv_attack_verifier_unlinkablity.dps | X verifier tracks prover
lc — __raccess response
(send o pack)(access resp.)

[1] Braun, Christoph H-J., Vasil Papanchev, and Tobias Kafer. "SISSI: an architecture for semantic interoperable self-sovereign identity-based access control on the web." Proceedings of

the ACM Web Conference 2023. 2023.
[2] Christoph H.-J. Braun, Ross Horne, Tobias Kéafer, and Sjouke Mauw. 2024. SSI, from Specifications to Protocol? Formally Verify Security! . In Pro- ceedings of the ACM Web Conference 2024

(WWW ’24), May 13-17, 2024, Singapore, Singapore. ACM, New York, NY, USA, 12 pages. https://doi.org/ 10.1145/3589334.3645426

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bhoi@unisa.it

Introduction

(A simple adaption of the protocol defined in [1] might be possible in Community Solid Server by

using the server as both Issuer and Verifier.

The Issuer releases the
VC containing the WeblD,
which is stored by the
Holder.

msc VC Protocol adapted from SISSI

sssss

« HTTPS(k;)

VC Issuance Protocol

(Some time later) },

HTTPS(kz) »

(uri, ust; app, iss)k;

check ACP for resource at uri

(VPR

VP = sig((VC, nonce, domain, app), skh)

(VPky

(representation)k,

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bboi@unisa.it

Introduction

C A simple adaption of the protocol defined in [1] might be possible in Community Solid Server by

using the server as both Issuer and Verifier.

msc VC Protocol adapted from SISSI

« HTTPS (ki)

I

VC Issuance Protocol

(Some time later))}

The Verifier authenticates the Holder by
checking the signatures applied on VC

VC = claims, sig(claims, ski)

HTTPS(kz) »

(uri, usr, app, iss)k;

check ACP for resource at uri

(VPR)K;

VP = sig((VC, nonce, domain, app), skh)

(VP)kz

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bhoi@unisa.it

Motivation

Anyway, in such a protocol, the Holder represents both the
user and the application that interacts with the AS.

A secure flow requires that the application must be fully
trusted by the user to create and use VPs without his explicit
approval each time.

msc VC Protocol adapted from SISSI
ski

< « HTTPS (k1) [

< VC Issuance Protocol

VC = claims, sig(claims, ski)

(Some time later) }—>f- - - - - = - - - -

HTTPS(kz) »

(uri, usr, app, iss)k;

(VPR

check ACP for resource at uri

if valid usr/app/iss

VP = sig(VC, nonce, domain, app), skh) |

(VP)kz

(representation)k,

check VP

if valid VC, nonce, domain

Access Granted

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bboi@unisa.it

Objective

A simple adaption of the protocol defined in[1] might be possible in Community Solid Server by
using the server as both an Issuer and Verifier.

Anyway, the role of the Holder must be adequately designed, in order to
Cha"enges separate the real User from the Application.

Key The key contribution of our research is to create a protocol able to:
thuti . susing VCs
Contribution 1. Guarantee users access to resource using C
2. Respect the separation between applications and users

\/K/\J

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bhoi@unisa.it

Proposed Protocol

Previous (no decoupling) Proposed (decoupled)

msc VC Protocol adapted from SISSI msc VC-based Request Flow that decouples User from App
ski skh . skh ska
Veriier [Aer_] Verifier
« HTTPS(k;)
I I issuance of VC (as on left)
VC Issuance Protocol
VC = claims, sig(claims, ski) HTTPS(ky) »
(VOky (uri, usr, app, iss)k,
(Some time later) >t - = = = = = = == == === <o oo >
check ACP for resource at uri
HTTPS(kz) »
(uri, usr, app, iss)k; if valid usr/app/iss
VPR = (nonce, domain, rules)
if valid usr/app/iss (VPR)k:
VPR = (nonce, domain, rules) HTTPS(ks) »
(VPR)K; }ig((usr, app, iss, nonce, domain),ska)ky
VP = sig((VC, nonce, domain, app), skh!
B pe), k) VP = sig((VC, nonce, domain, app), skh)
(VP)kz
(VP)ks
HTTPS(ks) »
if valid VC, nonce, domain
| (VPks |
Access Granted | |
(representation)k,

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bhoi@unisa.it

We have a complete separation between

Proposed Protocol

Previous (no decoupling)

the user and the application

VC = claims, sig(claims, ski)

(Some time later) }—>f - - -~ - - - -

HTTPS(k2) »

(uri, usr, app, iss)k;

(VPRIK;

check ACP for resource at uri
if valid usr/app/iss

VPR = (nonce, domain, rules)

VP = sig((VC, nonce, domain, app), skh) |
(VP)k,

(representation)k,

check VP

if valid VC, nonce, domain

Access Granted

Proposed (decoupled)

...

Verifier

HTTPS(k;) »

(uri, usr, app, iss)k;

check ACP for resource at uri

if valid usr/app/iss

VPR = (nonce, domain, rules)

(VPRI

HTTPS(ks) »

}ig((usr, app, iss, nonce, domain),ska)ky

VP = sig((VC, nonce, domain, app), skh)

(VP)ks

HTTPS(ks) »

Pk |

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bhoi@unisa.it

Proposed Protocol

Previous (no decoupling)

msc VC Protocol adapted from SISSI
ski

VC = claims, sig(claims,

(Some time later) X-»

‘

The Application directly contacts the
Verifier specifying uri, usr, app, iss fields.

HTTPS(k2) »

(uri, usr, app, iss)k;

check ACP for resource at uri
if valid usr/app/iss

VPR = (nonce, domain, rules)

(VPRIK;

VP = sig((VC, nonce, domain, app), skh) |

(VP)kz

check VP
if valid VC, nonce, domain

Access Granted

(representation)k,

Proposed (decoupled)

msc VC-based Request Flow that decouples User from App

skh

User

ska

App

Verifier

HTTPS(ky) »

(uri, usr, app, iss)k, ‘

check ACP for resource at uri

if valid usr/app/iss

VPR = (nonce, domain, rules)

(VPRI

HTTPS(ks) »

}ig((usr, app, iss, nonce, domain),ska)ky

VP = sig((VC, nonce, domain, app), skh)

(VP)ks

HTTPS(ks) »

Pk |

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bhoi@unisa.it

Proposed Protocol

Previous (no decoupling)

Proposed (decoupled)

msc VC-based Request Flow that decouples User from App
skh ska

App

issuance of VC (as on left)

Verifier

HTTPS(k;) »

(uri, usr, app,

iss)ky

¢ If they match, the Verifier generates a
VPR containing nonce, domain and rules.

check ACP for resource at uri
if valid usr/app/iss

VPR = (nonce, domain, rules)

msc VC Protocol adapted from SISSI
ski skh
« HTTPS(kr)
T I
VC Issuance Protocol
VC = claims, sig(claims, ski) ‘
(VO)ks
(Some time later) }—>f =~ = = ===~ ===~ - - - -
if valid usr/app/iss
VPR = (nonce, domain, rules)
(VPRK,
VP = sig((VC, nonce, domain, app), skh) |
(VP)k,
check VP
if valid VC, nonce, domain
Access Granted
(representation)k,
I — I

| I (VPRY;

HTTPS(ks) »

}ig((usr, app, iss, nonce, domain),ska)ky

VP = sig((VC, nonce, domain, app), skh)

(VP)ks

HTTPS(ks) »

{ VP

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bhoi@unisa.it

Proposed Protocol

Previous (no decoupling)

msc VC Protocol adapted from SISSI
ski skh

« HTTPS(k7)
T T
VC Issuance Protocol

VC = claims, sig(claims, ski)

(Some time later) Y-l = = = = = = == == === == —o oo oo oo
HTTPS(k;) »

(uri, usr, app, iss)k;

check ACP for resource at uri

The Application «forwards» the VP to the
User adding nonce and App’s signature.

if valid VC, nonce, domain

Access Granted

(representation)k,

Proposed (decoupled)

msc VC-based Request Flow that decouples User from App

skh ska

issuance of VC (as on left)

Verifier

HTTPS(k;) »

(uri, usr, app, iss)k;

check ACP for resource at uri

if valid usr/app/iss

VPR = (nonce, domain, rules)

(VPRI

HTTPS(ks) »

%ig((usr, app, iss, nonce, domain),ska)ky

VP = sig((VC, nonce, domain, app), skh)

(VP)ks

HTTPS(ks) »

Pk |

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bboi@unisa.it

Proposed Protocol

Previous (no decoupling) Proposed (decoupled)

msc VC Protocol adapted from SISSI msc VC-based Request Flow that decouples User from App
ski skh skh ska
(] e]
« HTTPS(ks)

I I issuance of VC (as on left)

VC Issuance Protocol

VC = claims, sig(claims, ski) HTTPS(k;) »

YOk (uri, usr, app, iss)k;
(Some time later) Y-l = = = = = = == == === == —o oo oo oo
HTTPS(kz) »

check ACP for resource at uri

if valid usr/app/iss

VPR = (nonce, domain, rules)

(uri, usr, app, iss)k;

check ACP for resource at uri

if valid usr/app/iss
VPR = (nonce, domain, rules)

(VPRIK;

(VPRI

HTTPS(ks) »

}ig((usr, app, iss, nonce, domain),ska)ky
|
VP = sig((VC, nonce, domain, app), skh)

The User generates the VP, which is then o

transmitted to the Verifier. . | e |
\ |

(representation)k,
[I

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bhoi@unisa.it

System Architecture

To support this protocol, we proposed a modification on the CSS

StaticAssetHandler

Architecture, by including some new components. —

SetupHandler
HttpHandler

S

VcHandler VcHandler
VcHttpHandler VcHttpHandler

OidcHandler
HttpHandler

NotificationHttpHandler
HttpHandler
StorageDescriptionHandler
HttpHandler
AuthResourceHttpHandler
HttpHandler
IdentityProviderHttpHandler
HttpHandler
LdpHandler
HttpHandler

RequestParser

BasicResponseWriter

ittpHandler ErrorHandler
" ErrorHandler

[ResponseWriter

Httpl MiddleWare
SequenceHandler [HttpHandler WaterfallHandler e

VcAuthorizingHttpHandler
ModesExtractor] ‘ ’

[VcExtractor ’ [VpChecker]

Authorizer ’ [OperationHttpHandler]
Per

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bboi@unisa.it ‘

e (f(] (im] @ VC Protocol Demo

= @)) @ localhost:8

Demo - App

This app can be used to send requests to the CSS server.

Send Requests

I http://localhost:3000/my-pod/test-folder/test-resource.txt

Demo

The Application sends a
request to the CSS.

© O @ \VC Protocol Demo
- C @ @ localhost

localhost:8080 says

Redirecting to User to get VP...

Send Requests

[http://localhost:3000/my-pod/test-folder/test-resource.txt
{"VerifiablePresentation":

[GET|

"query":
{"type":"QueryByExample", "credentialQuery":{"reason":"We
u to prove your eligibility.","credentialSubject":
id:web:ben3101.solidcommunity.net"},"issuer":

did:web:issuer123.solidcommunity.net"}}},"challenge":
"ndulH1WFi70yJEdYbP4fow: "domain my-pod/test-

folder/test-resource.txt","appName": "my-demo-app"}}

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bhoi@unisa.it

Demo

im} @ VC Protocol Demo

- (@] 0 @ localhost

localhost:8080 says

Redirecting to User to get VP...

This app can be]

Send Requests
[http://localhost:3000/my-poditest-folder/test-resource. txt | GET|

{"VerifiablePresentation":{"query": A VP request iS Sent to
{"type":"QueryByExample","credentialQuery":{"reason":"We
need you to prove your eligibility.","credentialSubject”:

{"id":"did:web:ben3101.solidcommunity.net"}, "issuer": th e U Se r
{"id id:web:issuer123.solidcommunity.net"}}}, "challenge":
"ndulH1WFi70yJEdYbP4fow==","domain":"/my-pod/test-
folder/test-resource.txt", "appName": "my-demo-app"}}

(im} ﬁ VC Protocol Demo - User

)] @ localhost % m =

localhost:8081 says

Please confirm you would like to create a VP with the following
information:

User: did:web:ben3101.solidcommunity.net
Application: my-demo-app

Issuer: did:web:issuer123.solidcommunity.net
Domain:/my-pod/test-folder/test-resource.txt

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bboi@unisa.it

Demo

Once the User read the field of the request,
then he can proceed with VP generation.

\/EJ im] E] VC Protocol Demo - User

@]) @ localhost:

im} B VC Protocol Demo - User

localhost:8081 says

@) @ localhost

Please confirm you would like to create a VP with the following
information:

localhost:8081 says
User: did:web:ben3101.solidcommunity.net VP granted. Redirecting to App..
Application: my-demo-app

Issuer: did:web:issuer123.solidcommunity.net

Domain:/my-pod/test-folder/test-resource.txt

Cancel

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bhoi@unisa.it

Demo

C The VP isincluded in the request to the App.)

e © O [vc Protocol Demo - User This app can be used to send requests to the CSS server.

Send Re s
&< C M @ localhost }m oot podtest-folder/test. it [ceT|

localhost:8081 says

VP granted. Redirecting to App...

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bhoi@unisa.it

Demo

e © O [Vvc Protocol Demo

& (@] 1) @ localhost

Demo - App

This app can be used to send requests to the CSS server.

Send Requests
T h ea p p can now g et th e http:/localhost:3000/my-pod/test-folder/test-resource. txt
This is a text document that should only be readable to:
- ifi 5
B content from the CSS. o cpecific a
‘his app can be used to send requests to the CSS server.

- on a specific app,
- with a valid Verifiable Credential from a specific issuer.

GET

Send Requests
i

User - did:web:ben3101.solidcommunity.net
App - my-demo-app
Issuer - did:web:issuer123.solidcommunity.net

Hello World

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bhoi@unisa.it

ormal Verification

mse User and App interaction with HTTPS Simple Variant

e e To evaluate the security of the proposed protocol, we also
‘clann.«:(uw,tss)‘ [mew symikua: Sy

Vo e e) formally verified the entire protocol using ProVerif, ensuring

{nu, Pk(skeu) Ypk(ora)

G it security properties.

{na, usr,iss}aymiva

if ny == ng then
[0r PR(5Ksa) bpi(okn)

(e, b, symkac bpi(er,.)

Verification summary:

Query attacker(rule_fromvVerifier[]) is

if nj, == na then
m), i= (ny, usr, uri, appl D, iss)

P Query attacker(vp_fromvVerifier[]) is
3 Yaymba

if (ny, usr’, w

' appID' iss') == (ny,usr,uri, appl D, iss) then
VPR':= (usr,

ri
uri, appl D)

Query attacker(access_token_fromvVerifier[]) is

m; = (v, (n., V., VPR), sig((n., V, VPR), sk.))
{ma}eymia Query inj-event(auth_UserCompletesProtocol(m_handshakeReq,m_handshakeResp,m_complete,m_vpr,m_vp)) ==> inj-ev
Py —— ent(auth_AppSendsLastMessageToUser(m_handshakeReq, m_handshakeResp,m_complete,m_80,m_81,m_82,m_83,m_vpr)) &&
{0 oy |5 1= (@PPID.m) inj-event(verifierInConeOfUser(m_80,m_81,m_82,m_83)) is
if check(/,VPR), syer, pk(sk,)) then § : q 5 g
i (o ur D') == (u,uri, appl D) then Query inj-event(auth_VerifierCompletesProtocol(m_handshake_ver,m_handshake_resp_ver,m_uri,m_vpr,m_vp,m_acces
g s Vourd, appl D), sig((ne, VC, V. uri, appl D), sku)) stoken)) inj-event(auth_AppSendsLastMessageToVerifier(m_80,m_81,m_2_bis_8,m_handshake_ver,m_handshake_re
- sp_ver,m_uri,m_vpr,m_82,m_83,m_vp)) & inj-event(auth_UserSendsLastMessageToApp(m_80,m_81,m_2_bis_8,m_82,m_8
{ma}syme.. 3)) is
if n,. ——nE
ms = (VF)) Query inj-event(auth_AppCompletesProtocol(m_80,m_81,m_2_bis_8,m_handshakeReq,m_handshakeResp,m_uri,m_rule,m_
{ms}emta 82,m_83,m_vp,m_accesstoken)) ==> inj-—event(auth_VerifierSendsLastMessageToApp(m_handshakeReq,m_handshakeResp
Juri’,appID'), susr, pku) then ,m_uri,m_rule,m_vp,m_accesstoken)) && inj-event(auth_UserSendsLastMessageToApp(m_80,m_81,m_2_bis_8,m_82,m_83
kiss) then
! ppID') ==))
(n’, s (usr, iss), V,uri, appI D) then
mg i= (JWT, sig(JWT, sku))
2 -
[0S Y-
—— — —

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bhoi@unisa.it

We proposed a novel
authentication schema

for CSS, able to decouple
user and application.

Conclusion
)

Formally Security of the
protocol has been proven.

We also proposed a
modification to the CSS
architecture to support our
protocol.

!

In future work, we aim to

enhance the entire protocol by
including non-repudiation as
an additional property.

Escaping from Identity Providers: Protecting Privacy with Verifiable Credentials in Community Solid Server — Biagio Boi — bboi@unisa.it

I Ben Macdonald, Ross Horne, Biagio Boi
[] Escaping from Identity Providers: Protecting

Privacy with Verifiable Credentials in Community cee
[]
Questions?

Solid Server

ss to Solid PODs is currently managed using Select an identity provider x ! Previous (no decoupling) o
words. To evaluate the security of the proposed protocol, we also
Enter the URL of your identity provider: formally verified the entire protocol using ProVerif, ensuring

security properties.

Password-based authentication is the weakest in terms of
privacy since credentials are stored on the Service Provider
SP), which is also responsible for service data.

Or pick an identity provider from the list below:

Solid Community.

0IDC is a valid alternative, where an Authentication Ineupt net
Server (AS) is responsible for managing users identity.

Solid Web l

pod Inrupt.com

N EUROPEAN COOPERATION
IN SCIENCE & TECHNOLOGY

.,‘ Funded by

the European Union

