
Clark-Wilson Policies in ACP: Controlling
Information Flow Between Solid Apps

SoSy’24: Privacy @ the Solid Symposium, May 2-3, 2024, Leuven, Belgium

Ellie Forsyth and Ross Horne
University of Strathclyde, Glasgow

Clark-Wilson Policies in ACP: Controlling Information Flow Between Solid Apps 1 of 13



Towards a policy model for Solid

This is WAC, a language for describing access control rules:

1 @prefix acl: <http://www.w3.org/ns/auth/acl#>
2
3 <#exampleOfWAC>
4 a acl:Authorisation;
5 acl:agent <https://solidweb.me/Ellie−s−Pod/profile/card#me>;
6 acl:default <https://solidweb.me/Ellie−s−Pod/Resource1/>;
7 acl:mode acl:Read, acl:Write.

Clark-Wilson Policies in ACP: Controlling Information Flow Between Solid Apps 2 of 13



Towards a policy model for Solid

This is WAC, a language for describing access control rules:

Research questions:
▶ Is WAC enough to describe policies with adequate security guarantees?
▶ What policy model suits Solid for determining when a policy is secure?

Clark-Wilson Policies in ACP: Controlling Information Flow Between Solid Apps 3 of 13



Towards a policy model for Solid

This is WAC, a language for describing access control rules:

Research questions:
▶ Is WAC enough to describe policies with adequate security guarantees?
▶ What policy model suits Solid for determining when a policy is secure?

Clark-Wilson Policies in ACP: Controlling Information Flow Between Solid Apps 3 of 13



Client constraints

“The Authorization Panel is undertaking the following initiatives, in priority order:
1. Document use cases and requirements for authorization.
2. Produce an authorization system specification to satisfy those use cases and

requirements.
3. Propose mechanism(s) for client constraints.”

Requirements transcending Solid use cases:
▶ Different entities run apps and pods.
▶ Different entities run apps that connect to the same pod.
▶ Entities are not mutually trustworthy (conflicts-of-interest, exposure to cyber

attacks, etc.).

Clark-Wilson Policies in ACP: Controlling Information Flow Between Solid Apps 4 of 13



Client constraints

“The Authorization Panel is undertaking the following initiatives, in priority order:
1. Document use cases and requirements for authorization.
2. Produce an authorization system specification to satisfy those use cases and

requirements.
3. Propose mechanism(s) for client constraints.”

Requirements transcending Solid use cases:
▶ Different entities run apps and pods.
▶ Different entities run apps that connect to the same pod.
▶ Entities are not mutually trustworthy (conflicts-of-interest, exposure to cyber

attacks, etc.).

Clark-Wilson Policies in ACP: Controlling Information Flow Between Solid Apps 4 of 13



Enterprise policy models since 1987

Clark-Wilson Policies in ACP: Controlling Information Flow Between Solid Apps 5 of 13



No client constraints; no confidentiality

Compromised App (attacker) IdP & User Authorisation Server

(1) honest app writes resource X for user

(2) Requests access from user

(3) DPoP token issued

(4) Spends DPoP token to access resource X

(5) policy for X names user but not app

(6) access granted to resource X

Clark-Wilson Policies in ACP: Controlling Information Flow Between Solid Apps 6 of 13



Clark-Wilson in ACP

1 @prefix acl: <http://www.w3.org/ns/auth/acl#> .
2 @prefix acp: <http://www.w3.org/ns/solid/acp#> .
3
4 <#exampleOfACP_1>
5 a acp:AccessControlResource;
6 acp:resource <https://solidweb.me/Ellie−s−Pod/Resource1/>;
7 acp:accessControl <#ownerAccess1>;
8 acp:memberAccessControl <#ownerAccess1>.
9

10 <#ownerAccess1>
11 a acp:AccessControl;
12 acp:apply [
13 a acp:Policy;
14 acp:allow acl:Read, acl:Write;
15 acp:allOf [
16 a acp:Matcher;
17 acp:client <https://solidweb.me/ClientPod/app1/clientid.jsonld>;
18 acp:agent <https://solidweb.me/Ellie−s−Pod/profile/card#me>;
19 acp:issuer <https://solidweb.me/> ] ].

Clark-Wilson Policies in ACP: Controlling Information Flow Between Solid Apps 7 of 13



Clark-Wilson in ACP

1 @prefix acl: <http://www.w3.org/ns/auth/acl#> .
2 @prefix acp: <http://www.w3.org/ns/solid/acp#> .
3
4 <#policy1>
5 a acp:Policy;
6 acp:allow acl:Read, acl:Write;
7 acp:allOf [
8 a acp:Matcher;
9 acp:client <https://solidweb.me/ClientPod/app1/clientid.jsonld>;

10 acp:agent <https://solidweb.me/Ellie−s−Pod/profile/card#me>;
11 acp:issuer <https://solidweb.me/> ] .

Clark-Wilson Policies in ACP: Controlling Information Flow Between Solid Apps 8 of 13



Clark-Wilson in ACP

1 @prefix acl: <http://www.w3.org/ns/auth/acl#> .
2 @prefix acp: <http://www.w3.org/ns/solid/acp#> .
3
4 <#policy1>
5 a acp:Policy;
6 acp:allow acl:Read, acl:Write;
7 acp:allOf [
8 a acp:Matcher;
9 acp:client <https://solidweb.me/ClientPod/app2/clientid.jsonld>;

10 acp:agent <https://solidweb.me/Ellie−s−Pod/profile/card#me>;
11 acp:issuer <https://solidweb.me/> ] .

Clark-Wilson Policies in ACP: Controlling Information Flow Between Solid Apps 9 of 13



Clark-Wilson in ACP

1 <#exampleOfACP_2>
2 a acp:AccessControlResource;
3 acp:resource <https://solidweb.me/Ellie−s−Pod/Resource2/>;
4 acp:accessControl <#ownerAccess2>, <#externalAgent>;
5 acp:memberAccessControl <#ownerAccess2>, <#externalAgent>.
6
7 <#ownerAccess2>
8 a acp:AccessControl;
9 acp:apply [

10 a acp:Policy;
11 acp:allow acl:Read, acl:Write;
12 acp:allOf [
13 a acp:Matcher;
14 acp:client <https://solidweb.me/ClientPod/app2/clientid.jsonld>;
15 acp:agent <https://solidweb.me/Ellie−s−Pod/profile/card#me>;
16 acp:issuer <https://solidweb.me/> ] ].

Requirement: identify apps and name them in the policy.

Clark-Wilson Policies in ACP: Controlling Information Flow Between Solid Apps 10 of 13



Policy model enforced by security app

1 <#root>
2 a acp:AccessControlResource;
3 acp:resource <./>;
4 acp:accessControl <#secureApp>;
5 acp:memberAccessControl <#secureApp>.
6
7 <#secureApp>
8 a acp:AccessControl;
9 acp:apply [

10 a acp:Policy;
11 acp:allow acl:Control;
12 acp:allOf [
13 a acp:Matcher;
14 acp:client <https://solidweb.me/ClientPod/demoApp/clientid.jsonld>;
15 acp:agent <https://solidweb.me/Ellie−s−Pod/profile/card#me>;
16 acp:issuer <http://localhost:3000/>
17 ]
18 ].

Policy: entity of pod entrusts entity providing security app.
Clark-Wilson Policies in ACP: Controlling Information Flow Between Solid Apps 11 of 13



Attack without acp:issuer

attacker

Compromised IdP Authorisation Server

agent

User’s WebID

Self-signs token as agent and client

Spends token to access resource

IdP listed in WebID

Check policy diregards issuer

Gives access to resource

Clark-Wilson Policies in ACP: Controlling Information Flow Between Solid Apps 12 of 13



Challenges

Cyber-resillience: isolate cyber risks by filtering access by organisational boundaries?
Draw inspiration from Clark-Wilson, Android developer, same-origin, etc.

Lattice-based policy model:
▶ Explicit confidentiality and integrity goals.
▶ Conflicts-of-interests between entities (Brewer-Nash).
▶ Sanitized data flows freely between entities permited to access pod.
▶ Dynamics: pod (and security app) validates state transitions (e.g., don’t give more

than acl:Control to security app, require consent to enable new accesses, etc.)

Community effort: specify policy models for Solid with guidelines for use cases.

Policy model can encompass legal aspects of policy (e.g., is entity linked with contact
details of controller).

Clark-Wilson Policies in ACP: Controlling Information Flow Between Solid Apps 13 of 13


