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Towards a policy model for Solid

This is WAC, a language for describing access control rules:

1 @prefix acl: <http://www.w3.org/ns/auth/acl#>
2
3 <#exampleOfWAC>
4 a acl:Authorisation;
5 acl:agent <https://solidweb.me/Ellie−s−Pod/profile/card#me>;
6 acl:default <https://solidweb.me/Ellie−s−Pod/Resource1/>;
7 acl:mode acl:Read, acl:Write.
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Towards a policy model for Solid

This is WAC, a language for describing access control rules:

Research questions:
▶ Is WAC enough to describe policies with adequate security guarantees?
▶ What policy model suits Solid for determining when a policy is secure?
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Client constraints

“The Authorization Panel is undertaking the following initiatives, in priority order:
1. Document use cases and requirements for authorization.
2. Produce an authorization system specification to satisfy those use cases and

requirements.
3. Propose mechanism(s) for client constraints.”

Requirements transcending Solid use cases:
▶ Different entities run apps and pods.
▶ Different entities run apps that connect to the same pod.
▶ Entities are not mutually trustworthy (conflicts-of-interest, exposure to cyber

attacks, etc.).
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Enterprise policy models since 1987
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No client constraints; no confidentiality

Compromised App (attacker) IdP & User Authorisation Server

(1) honest app writes resource X for user

(2) Requests access from user

(3) DPoP token issued

(4) Spends DPoP token to access resource X

(5) policy for X names user but not app

(6) access granted to resource X

Clark-Wilson Policies in ACP: Controlling Information Flow Between Solid Apps 6 of 13



Clark-Wilson in ACP

1 @prefix acl: <http://www.w3.org/ns/auth/acl#> .
2 @prefix acp: <http://www.w3.org/ns/solid/acp#> .
3
4 <#exampleOfACP_1>
5 a acp:AccessControlResource;
6 acp:resource <https://solidweb.me/Ellie−s−Pod/Resource1/>;
7 acp:accessControl <#ownerAccess1>;
8 acp:memberAccessControl <#ownerAccess1>.
9

10 <#ownerAccess1>
11 a acp:AccessControl;
12 acp:apply [
13 a acp:Policy;
14 acp:allow acl:Read, acl:Write;
15 acp:allOf [
16 a acp:Matcher;
17 acp:client <https://solidweb.me/ClientPod/app1/clientid.jsonld>;
18 acp:agent <https://solidweb.me/Ellie−s−Pod/profile/card#me>;
19 acp:issuer <https://solidweb.me/> ] ].
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Clark-Wilson in ACP

1 @prefix acl: <http://www.w3.org/ns/auth/acl#> .
2 @prefix acp: <http://www.w3.org/ns/solid/acp#> .
3
4 <#policy1>
5 a acp:Policy;
6 acp:allow acl:Read, acl:Write;
7 acp:allOf [
8 a acp:Matcher;
9 acp:client <https://solidweb.me/ClientPod/app2/clientid.jsonld>;

10 acp:agent <https://solidweb.me/Ellie−s−Pod/profile/card#me>;
11 acp:issuer <https://solidweb.me/> ] .
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Clark-Wilson in ACP

1 <#exampleOfACP_2>
2 a acp:AccessControlResource;
3 acp:resource <https://solidweb.me/Ellie−s−Pod/Resource2/>;
4 acp:accessControl <#ownerAccess2>, <#externalAgent>;
5 acp:memberAccessControl <#ownerAccess2>, <#externalAgent>.
6
7 <#ownerAccess2>
8 a acp:AccessControl;
9 acp:apply [

10 a acp:Policy;
11 acp:allow acl:Read, acl:Write;
12 acp:allOf [
13 a acp:Matcher;
14 acp:client <https://solidweb.me/ClientPod/app2/clientid.jsonld>;
15 acp:agent <https://solidweb.me/Ellie−s−Pod/profile/card#me>;
16 acp:issuer <https://solidweb.me/> ] ].

Requirement: identify apps and name them in the policy.
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Policy model enforced by security app

1 <#root>
2 a acp:AccessControlResource;
3 acp:resource <./>;
4 acp:accessControl <#secureApp>;
5 acp:memberAccessControl <#secureApp>.
6
7 <#secureApp>
8 a acp:AccessControl;
9 acp:apply [

10 a acp:Policy;
11 acp:allow acl:Control;
12 acp:allOf [
13 a acp:Matcher;
14 acp:client <https://solidweb.me/ClientPod/demoApp/clientid.jsonld>;
15 acp:agent <https://solidweb.me/Ellie−s−Pod/profile/card#me>;
16 acp:issuer <http://localhost:3000/>
17 ]
18 ].

Policy: entity of pod entrusts entity providing security app.
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Attack without acp:issuer

attacker

Compromised IdP Authorisation Server

agent

User’s WebID

Self-signs token as agent and client

Spends token to access resource

IdP listed in WebID

Check policy diregards issuer

Gives access to resource
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Challenges

Cyber-resillience: isolate cyber risks by filtering access by organisational boundaries?
Draw inspiration from Clark-Wilson, Android developer, same-origin, etc.

Lattice-based policy model:
▶ Explicit confidentiality and integrity goals.
▶ Conflicts-of-interests between entities (Brewer-Nash).
▶ Sanitized data flows freely between entities permited to access pod.
▶ Dynamics: pod (and security app) validates state transitions (e.g., don’t give more

than acl:Control to security app, require consent to enable new accesses, etc.)

Community effort: specify policy models for Solid with guidelines for use cases.

Policy model can encompass legal aspects of policy (e.g., is entity linked with contact
details of controller).
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